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The molybdenum-copper catalyst was prepared by impregnating with an aqueous precursors solution 

by the pore filling method. The catalyst was characterized by determining the acid strength and textural 

characteristics. The catalyst contains predominantly weak acidic centers and the average pore diameter 

is 4.3 nm. Conversion of residual fatty acids into deoxygenated liquid were carried out on a laboratory 

equipment in continuous system using a fixed bed catalytic reactor. The reaction products where mainly 

linear hydrocarbons C15, C16, C17 and C18 and shorter chain hydrocarbons <C15 and no oxygenated 

products, alkene or iso-alkane were identified. The yield in hydrocarbons obtained by decarboxylation 

/ decarbonylation and by hydrocraking are lower than the yield in hydrocarbons obtained by 

hydrodeoxygenation.  
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Triglycerides can be used directly in diesel engines, but direct combustion can cause many engine problems, due to the 

high viscosity and low volatility of triglycerides, such as: carbon deposits and injector coking [1]. Direct hydroconversion 

of triglycerides into hydrocarbons is a variant viable to eliminate these drawbacks [2-4]. 

Obtaining green fuel by hydroconversion represents a solution to solve the global problem of clean energy [5-7]. The 

application of catalytic technology for the transformation of oils into green diesel has great potential for industrial 

application. The main problem for developing green diesel technologies is the limited number of non-food triglyceride 

sources of fatty acids [8].  

Hydrotreatment reactions are extremely exothermic, their control being extremely important. These reactions have been 

usually applied to remove heteroatoms such as sulfur, oxygen and nitrogen from various oil fractions and occur in the 

presence of metal and acid catalytic centers [9-12]. Impurities from animal oils or fats, high reaction temperature, 

insufficient control of the reaction temperature or too little hydrogen in the reactor can lead to unwanted side reactions, such 

as cracking, polymerization, ketonization, cyclization and aromatization and deposition of coke on the catalyst. 

Hydroconversion results from several competing reactions, such as decarboxylation [13], decarbonylation [14-16] and 

hydrodeoxygenation [17].Snare et al. [18] used oleic acid, linoleic acid and methyl oleate as model compounds in vegetable 

oil, for hydroconversion on a semi-continuous reactor, using a 5% Pd / C catalyst, resulting in high selectivity and high 

yields in hydrocarbons. They observed that the hydroprocessing of unsaturated acids takes place through the initial 

hydrogenation of the double bonds, followed by deoxygenation of the saturated acid. Also, prior to hydrogenation, 

intermediate isomerization reactions occur, e.g. isomerization of oleic acid to elaidic acid. Mostly n-heptadecane was 

identified, as well as small amounts of position isomers of the respective olefin (1-, 3-, and 8-heptadecene) and C17 aromatic 

compounds. 

The hydrodeoxygenation of stearic acid on commercial Pd catalysts deposited on coal, (Pd / C (1% and 5% Pd), was 

studied by Stepacheva and his team [19], for 280 minutes at 528K and 0.6 MPa, obtaining mostly n-heptadecane, with a 

selectivity of 97% (1% Pd / C) and 88% (5% Pd / C), indicating that on Pd catalysts, the hydroconversion process of 

saturated fatty acids it proceeds by the decarbonylation mechanism, and that of the unsaturated fatty acids occurs in two 

stages (i) hydrogenation of the double bond; (ii) decarbonylation of the saturated acids with the formation of hydrocarbons. 

cracking - The kinetic model developed by Arora et al. [20], regarding the hydrodeoxygenation of stearic acid on NiMo 

catalyst, takes into account a simplified scheme of hydroconversion reactions containing all three hydroconversion 

pathways: decarboxylation, decarbonylation and hydrodeoxygenation: In the temperature range 548-598K and at pressures 

of 40-70 bar, C17 and C18 alkane isomers are mainly present. At all temperatures tested the rate of formation of the 

decarbonate products was higher than that of the directly hydrogenated oxygen products. 
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The possible reaction pathways for triolein hydroconversion on Ni, Co and Mo catalysts on alumina support have been 

studied by Horacek et al. They observed that triolein was initially hydrogenated and then completely transformed into single-

chain products in the form of di- and monoglycerides with small amounts of stearic acid, as an intermediate product. The 

stearic acid was converted into C17 and C18 hydrocarbons by two hydrodeoxygenation and decarboxylation / 

decarbonylation reaction pathways. By hydrodeoxygenation, octadecane (C18) and propane were formed, and by 

decarboxylation / decarbonylation, the carboxyl groups were removed as CO2 and CO. The difference in the distribution of 

products of different model compounds indicates that the catalytic activity depends on the degree of unsaturation of the raw 

material. The authors found the NiMo catalyst to be the most active catalyst in the temperature range of 250 °C and 270°C. 

At the same temperature range, on the CoMo / Al2O3 catalyst, the hydrodeoxygenation reaction is half selective [21]. 

The activity of hydrodeoxygenation catalysts, selectivity to hydrocarbons and the mechanism of deoxygenation are 

mainly influenced by the presence of acid catalytic centers. As in the case of hydrodesulfurization and of other 

hydrogenation reactions, the presence of acid catalytic centers, with a certain distribution of their strength, is essential in 

the development of the respective processes [22, 23]. 

The increase in the production of refined vegetable oils has led to an equivalent increase in the quantity of by-products 

resulting in the refining of these fats. Capitalizing on them by introducing them into the circular economy is a priority for 

the next period. In this paper we studied the hydroconversion process of the residual fraction of fatty acids, resulting in the 

refining of sunflower vegetable oil, on a Co-Mo catalyst deposited on -Al2O3. 

 

Experimental part 
Catalyst preparation and characterization 

The catalyst  support is -Al2O3 in extruded form, from Alfa Aesar. The catalysts were prepared by successive 

impregnation with pore filling method. The catalytic precursors were aquous solution of ammonium molybdate heptahydrate 

(99.98% Sigma Aldrich), and copper nitrate (purum p.a. Sigma-Aldrich). After every impregnation at room temperature, 

the catalytic precursor was dried at ambient temperature for 6 h and calcinated at 500°C for 6 h. 

Catalyst characterization was performed by determining the acid strength and textural characteristics. The acid strength 

distribution of the active center has been determined by the method of thermal desorption of diethyl-amine on a DuPont 

Instruments Thermal Analyst 2000/2100 coupled with a module 951 Thermogravimetric Analizer. Textural characteristics 

of the catalyst (surface area, pore volume, average pore diameter, pore-size-distribution) were determined on a Autosorb 1 

Quantacrome. 

Hydroconversion of the residual fraction of fatty acids from sunflower oil, was carried out on a continuous reactor, with 

a fixed catalyst layer, in which the reactants are introduced into the reactor through the upper part of the reactor.  

The raw material used to study the hydroconversion process was an oil by-product resulting from the splitting of the 

soap-stock in refining sunflower oil - the residual fraction of sunflower fatty acids, with the characteristics mentioned in  

Table 1. The main components are fatty acids and glycerides derived from sunflower oil. 

 
Table 1 

CHARACTERISTICS OF THE RESIDUAL FRACTION 

OF SUNFLOWER FATTY ACIDS 

Properties of the residual fraction of fatty acids from 

sunflower 

Value 

Density, 15ºC, g/cm3 0.9 

Acidity value, mgKOH/g 90 

Fats,  % 95 

Saponification index, mgKOH/g 186.4 

Apparent average molecular mass, kg/kmol 290 

  

 The experiments were carried out in the following experimental conditions: temperature (T): ranging from 300°C to 

340°C, pressure (p) from 50 bar to 70 bar and the liquid hourly space velocity (LHSV) from 0.2h-1 to 0.4h-1. The feedstock 

consisted of residual fraction of fatty acids and hexane as a solvent, with residual fraction of fatty acids concentration of 5 

wt%, was introduced by a metering pump. 

The composition of the reaction mixture was performed by gas chromatography (Varian 3800) coupled with mass 

spectrometry (Varian 4000), equipped with Agilent VF-5ms capillary column.  The carrier gas was He. 

The conversion of the residual fraction of fatty acids from sunflower (Cx)was determined on the basis of the 

saponification index of the raw material and the reaction products: 
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       Cx (%) = [(CSap.mp- CSap.i)/CSap.mp]x100,         (1) 

- CSap.mp, represents the saponification value of the raw material, in mg KOH / g raw material; 

- CSap.i, represents the saponification value of the reaction product, in mg KOH / g sample; 

Yield of linear hydrocarbons obtained by cracking (<n-C15): 

η C<15,% = (sum of moles linear hydrocarbons C≤15: sum of moles components) x 100;  (2) 

 

Yield in hydrocarbons obtained by decarboxylation / decarbonylation (pentadecane and heptadecane): 

η C15+17,% = (sum of moles n-C15+17 / sum of moles components) x 100;    (3) 

 

Yield in hydrocarbons obtained by hydrodeoxygenation (hexadecane and octadecane): 

η C16+18,% = (sum of moles n-C16+18/ sum of moles components) x 100;    (4) 

 

 Yield in other products (hydrocarbons C> 18, oxygenated compounds): 

η other products,% = [sum of moles (hydrocarbons C> 18, oxygenated compounds) / 

/sum of moles components] x100;      (5) 

 

Results and discussions 

Diethylamine thermodesorption curves of the catalyst, from 20 to 600°C, are shown in Figure 1. The three zones are 

assigned to weak, medium, and strong acidities. The weak acidic centers are obtained in the first region which ranges from 

160°C to 300°C, the medium acidic centers are in the second region from 300°C to 450°C and the strong acidic centers are 

in the last region from 450°C to 600°C. 

 
Fig.  1. Diethylamine thermodesorption curve of the catalyst 

  

 

The concentration of strongly acidic centers is 0.226 meq / g, the concentration of the medium strength centers is 0.174 

meq / g and that of the weak acid centers is 0.438 meq / g (Table 2). 

 
Table 2 

PORES ACID STRENGTH DISTRIBUTION OF THE CATALYST 

Acidic centers Concentration 

(meq/g ) 

Weak acidic centers 0.438 

Medium-strength acid centers 0.174 

Strong acidic centers 0.226 

Total acidity 0.838 

 

 The pore distribution and the pore volume according to the radius were calculated according to the volume adsorbed 

at the relative pressure of 0.99, using the desorption branch of the isotherms, using the Barrett Joyner-Halenda (BJH) 

method.The adsorption / desorption isotherm and pore size distribution of the 10% Mo5% Cu / γ-Al2O3 catalyst are shown 

in Figures 2-3.  
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Fig.  2. The isotherm of nitrogen adsorption / desorbtion 

 

The adsorption isotherm is of type IV and has a hysteresis loop of type E. The volume of adsorbed nitrogen is reduced 

to relative pressures (w / w) of 0.1, due to its monolayer adsorption on the surface of the catalyst.  

 
Fig.  2. Pore size distributions of the catalyst 

 

 The mesopore size distribution of the catalyst  is between 2 and 11 nm (Figure 3). Total pore volume, determined 

by the BJH method is 0.312 cm3 / g and the average pore diameter is 4.314 nm (Table 3). 
 

Table 3 

TEXTURAL PROPERTIES OF THE CATALYST 

Specific surface BET, 

(m2 /g) 

 

Pore volume, (cm3/g) Average pore diameter, 

(nm) 

124.11 0.312 4.314 

 

 From the analysis of the reaction products, mainly linear hydrocarbons C15, C16, C17 and C18 and shorter chain 

hydrocarbons <C15 were identified. No oxygenated products (alcohols or esters), alkenes or iso-alkanes have been 

identified. In the other products category were considered hydrocarbons with C> 18 atoms, which were identified with small 

percentages. Figure 4 shows an example of a chromatogram obtained by GC-MS analysis of the reaction products obtained 

by hydrotreating the residual fraction of sunflower fatty acids, on the catalyst 10% Mo5% Cu / γ-Al2O3 to 300oC, pressure 

of 50 bar and LHSV of 0.2 h-1. 
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Fig. 4. The chromatogram of reaction products identified from the GC-MS 

 

  

Figure 47 shows the variation of the conversion of the raw material, with temperature, in the range 300°C-340°C. It is 

observed that, during this interval, the conversion of the raw material is > 90% and increases with the increase of 

temperature, up to 95.6% at 340°C, pressure of 50 bar and LHSV of 0.2 h-1. 

 

 
Fig. 5. Influence of reaction temperature onthe conversion 

at 50 bar and LHSV 0.2 h-1 

 

 

 The yields in the reaction products, for the catalyst 10% Mo5% Cu / γ-Al2O3, at temperatures between 300 °C - 340 

°C and pressure and LHSV of 50 bar respectively, 0.2 h-1, is shown in Figure 6. The yield in the linear hydrocarbons n-C18 

+ n-C16, formed on the hydrodeoxygenation reaction mechanism, is 74.14% at 300 °C and decreases with increasing 

temperature, reaching 73.94%, at a temperature of 340 °C. The yield in n-C17 + n-C15 hydrocarbons, formed by 

decarboxylation/ decarbonylation, decreases with increasing temperature, from 19.11% to 12.45%, with the increase in yield 

in linear hydrocarbons with carbon number <15 (<n-C15). The increase of the yield in hydrocarbons <C15, at temperatures 

higher than 320 °C, indicates that at the pressure of 50 bar and LHSV of 0.2 h-1, occur the reactions of hydrocracking of 

fatty acids, with fragmentation of their chains. This can be demonstrated by following the decrease of the yield in long-

chain linear hydrocarbons (C15-C18). 
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Fig. 6. The influence of temperature on the yield in reaction products 

at 50 bar and LHSV 0.2 h-1 

 

 To evaluate the predominant reaction mechanism for the hydroconversion of the residual fraction of sunflower fatty 

acids on the 10% Mo5% Cu / γ-Al2O3 catalyst, the influence of the reaction temperature on the molar ratios between the 

linear hydrocarbons n-C18 / n-C17 and the linear hydrocarbons n-C16 / n-C15 was studied. The results are shown in Figure 

7. From the obtained results it can be seen that the ratio n-C18 / n-C17, is higher than the unit, over the whole temperature 

range studied, thus indicating that for carboxylic acids C18, hydrodeoxygenation is more likely than decarboxylation / 

decarbonylation. 

 
Fig.7. The influence of temperature on molar ratios nC18/nC17and nC16/nC15 

at 50 barr and LHSV 0.2 h-1 

 

 Increasing the pressure from 50 bar to 70 bar, with the constant maintenance of the other parameters (340 ° C and 

0.2 h-1), insignificant influences the conversion of the raw material. We can see from Figure 8, an insignificant increase of 

the conversion from 95.6% at 50 bar, to only 95.8% at 70 bar. 

 

 
Fig.8. Variation of the conversion of the raw material with  

the pressure at 340°C and LHSVof  0.2 h-1 
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In figure 9, the influence of the pressure on the yield in reaction products at 340 °C and a volume speed of 0.2h-1 is 

shown. The yield in n-C18 + n-C16 linear hydrocarbons decreases from 73.94% at 50 bar, to 65.2% at 70 bar. In contrast, 

the yield in linear hydrocarbons n-C18 + n-C16 increased from 12.45% to 18.4%. Higher pressure favors cracking reactions, 

yields in linear hydrocarbons with shorter chains of 15 C atoms, decreased from 8%, to 3% with increasing pressure from 

50 bar to 70 bar. The increase in yield in other products (C> 18) indicates that oligomerization reactions at pressure greater 

than 50 bar are favored, probably due to the improved access to the strong acid centers of catalyst. 

 
Fig.9. The influence of the pressure on the yield in reaction products, 

at 340°C and LHSV of 0.2 h-1 

 

The molar ratio of n-C16 / n-C15 hydrocarbons increased with increasing pressure from 50 bar to 60 bar, after which it 

started to decrease, which shows that at pressures above 60 bar, decarboxylation / decarbonylation reactions, are beginning 

to intensify. For C18 carboxylic acids, the n-C18 / n-C17 ratio decreases almost linearly throughout the pressure range 

(Figure 10). 

 
Fig.10. The influence of pressure on molar ratios nC18/nC17 şi nC16/nC15 

at 340°C and LHSV of 0.2 h-1 

 

 In Figure 11 it is observed that the transformation of the residual fraction of fatty acids from the sunflower decreases 

with the increase of the LHSV. At LHSV values of 0.2 h-1 the conversion of the fatty acid residual fraction is 95.9% and at 

LHSV of 0.4 h-1 decreases to 93.2%. The decrease of the conversion with the increase of LHSV occurs because the contact 

time between the catalyst and the raw material is smaller. 



REV.CHIM.(Bucharest) ♦ 70 ♦  no. 12 ♦  2019     4273                  http://www.revistadechimie.ro 

 

 
Fig. 11. Variation of the conversion of the raw material with LHSV, 

at 340°C and 70 bar 

 

 The yield in the linear hydrocarbons of interest, n-C16 + n-C18 increases almost linearly, from 65.2% to 74.49% 

with the increase in LHSV from 0.2 to 0.4 h-1, under constant conditions. temperature (340 °C) and pressure (70 bar), while 

the yield in n-C17 + n-C15 hydrocarbons, decreases from 18.4% to 10.69% (Figure 12). Yields in <n-C15 hydrocarbons 

and other products (n> C18), slightly decrease with increasing of LHSV, thus a shorter contact time of the reactants on the 

10% Mo5% Cu / γ-Al2O3 catalyst favors hydrodeoxygenation reactions over decarboxylation / decarbonylation and 

hydrocracking. This is also confirmed by the molar ratios n-C16 / n-C15 and n-C18 / n-C17, which at a LHSV of 0.4 h-1, 

are higher than at the LHSV of 0.2 h-1, as can be seen in Figure 13. 

 
Fig. 12. The influence of the LHSV on the yield in reaction products 

at 340°C and 70 bar 

 

 
Fig. 13. The influence of LHSV on the molar ratios nC18/nC17 şi nC16/nC15 

at 340°C and 70 bar 
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Conclusions 

The catalyst contains predominantly weak acidic centers and the mesopore size distribution of the catalyst  is between 2 

and 11 nm with a average pore diameter of 4.314 nm. 

Hydroconversion of the residual fraction of fatty acids from sunflower oil, was carried out on a continuous reactor, with 

a fixed catalyst layer. 

The reaction products where mainly linear hydrocarbons C15, C16, C17 and C18 and shorter chain hydrocarbons <C15 

and no oxygenated products, alkene or iso-alkane were identified. 

The conversion of the residual fraction of fatty acids from sunflower had high values in the field of temperature variation, 

pressure and liquid hourly space velocity studied. 

At the values of the operating parameters studied, the yield in hydrocarbons obtained by decarboxylation / 

decarbonylation and by hydrocraking are lower than the yield in hydrocarbons obtained by hydrodeoxygenation.  

The yield in hydrocarbons formed by decarboxylation / decarbonylation, decreases with increasing temperature, while 

the yield in hydrocracking products increases with temperature. 
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